Relationship between dissociation and [protein]tot

Take as a simple example: $\alpha_2 \rightleftharpoons 2\alpha$ (dimer-monomer equilibrium)

- Take as an estimate of the K_d value of the dimeric structure (α_2) a value of about 10⁻⁶ M.
- You can calculate the concentration of α subunits $[\alpha]$ at different [protein]_{tot}, by the equation for the K_d value:
 - $K_d = [\alpha]^2/[\alpha_2]$ from the reaction for the dissociation: $\alpha_2 \rightleftharpoons 2\alpha$ (using H for the α monomer):
 - Therefore, $[H]^2 = K_d \cdot [H_2]$
 - But, to get [H] in one equation with one unknown, you can use the relationship: [protein]_{tot} = [H] + [H₂]; or [H₂] = [protein]_{tot} [H]
 - Therefore, $[H]^2 = K_d \cdot ([protein]_{tot} [H]))$
 - And, $[H]^2 = \mathcal{K}_d \cdot [protein]_{tot} \mathcal{K}_d \cdot [H];$ $[H]^2 + \mathcal{K}_d \cdot [H] = \mathcal{K}_d \cdot [protein]_{tot}$ $[H]^2 + \mathcal{K}_d \cdot [H] \mathcal{K}_d \cdot [protein]_{tot} = 0, \text{ which is a quadratic equation* where a=1, b= <math>\mathcal{K}_d$, and c= $-\mathcal{K}_d \cdot [protein]_{tot}$
 - Therefore, [H] = $(-K_d \pm ((K_d)^2 4 \cdot 1 \cdot K_d \cdot [protein]_{tot})^{0.5})/2 \cdot 1$
- At a concentration of 1 mM ([protein]_{tot}), [H] = $(10^{-6} \pm ((10^{-6})^2 (4 \cdot -10^{-6} \cdot 10^{-3}))^{0.5})/2$, or 3.1x10⁻⁵ M, and [H₂] = 0.001 0.000031 M = 0.00097 M. Ratio of 31:1 (H₂:H)
- At a concentration of 1 μ M ([protein]_{tot}), [H] = $(10^{-6} \pm ((10^{-6})^2 (4 \cdot -10^{-6} \cdot 10^{-6}))^{0.5})/2$, or [H] = 6.2×10^{-7} M, and [H₂] = $1 \times 10^{-6} 6.2 \times 10^{-7} = 3.8 \times 10^{-7}$ M. Ratio of 0.6:1 (H₂:H)

Therefore, as you go from a TOTAL [protein] of 1 mM to 1 μ M (dilution of 1000x), the amount of dimer(H₂) goes from 31-fold excess of the monomer(H) to less that 1:1 (0.6:1).

*The quadratic equation: For $ax^2 + bx + c = 0$

 $x = (-b\pm(b^2-4ac)^{0.5})/2a$